Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter Norris and Matthias Zeller*

Department of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555-3663, USA

Correspondence e-mail: mzeller@cc.ysu.edu

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.110$
Data-to-parameter ratio $=10.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,3,4-Tri-O-acetyl- β-L-fucopyranosyl azide

The title compound, $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7}$, crystallizes with two crystallographically independent molecules in the asymmetric unit. Both virtually identical molecules exhibit the expected chair conformation.

Comment

2,3,4-Tri- O-acetyl- β-L-fucopyranosyl azide, (2), is formed as a result of an $\mathrm{S}_{N} 2$ displacement of bromide by the azide anion from the corresponding α-fucopyranosyl bromide, (1) (Cao \& Roy, 1996), or by the Lewis acid-promoted reaction of $1,2,3,4-$ tetra- O-acetyl-L-fucose with TMSN_{3} (Györgydeák \& Szilágyi, 1985). Azide (2) has been employed in Strecker and Ugi chemistry (Kunz et al., 1991) and as a precursor to peptidosaccharide derivatives (Subramaniam, 1997).

The solid-state structure of (2) was determined by X-ray diffraction at 100 K (Fig. 1). It crystallizes in the non-centrosymmetric space group $P 2_{1}$ with $Z=4$ and two crystallographically independent molecules in the asymmetic unit. Only marginal differences are found between the two molecules, the weighted r.m.s. deviation being $0.1016 \AA$. The derived bond lengths and angles are within the expected ranges, and the six-membered rings exhibit the chair conformation expected for a fucopyranose. The O-acetyl groups at

Figure 1
One of the independent molecules of (2), showing 50% probability displacement ellipsoids.

Received 11 February 2005 Accepted 15 February 2005 Online 26 February 2005

organic papers

atom C 2 , and C 22 for the second molecule, are located in axial positions, and all other non- H substituents are found in equatorial positions. The acetate groups, as well as the azide group of each molecule, are approximately parallel to each other, as may be seen from Fig. 1.

The β-configuration of (2) with the azide group occupying the equatorial position at the anomeric C atom is clearly confirmed. The azide functional group is close to linear [$\mathrm{N} 1-$ $\mathrm{N} 2-\mathrm{N} 3=172.2(3)^{\circ}$ and $\left.\mathrm{N} 4-\mathrm{N} 5-\mathrm{N} 6=171.7(3)^{\circ}\right]$ and the $\mathrm{C} 5-\mathrm{N} 1-\mathrm{N} 2$ and $\mathrm{C} 25-\mathrm{N} 4-\mathrm{N} 5$ angles are 114.1 (2) and 113.3 (2) ${ }^{\circ}$, respectively. The $\mathrm{N} \equiv \mathrm{N}$ triple-bond distances $\mathrm{N} 2 \equiv \mathrm{~N} 3$ and $\mathrm{N} 5 \equiv \mathrm{~N} 6$ are 1.120 (3) and 1.112 (3) \AA, respectively, and the $\mathrm{N}-\mathrm{N}$ single bond lengths $\mathrm{N} 1-\mathrm{N} 2$ and $\mathrm{N} 4-\mathrm{N} 5$ are 1.230 (3) and 1.246 (3) \AA, respectively.

Experimental

The sample of (2) was prepared according to the method of Cao \& Roy (1996). Crystals suitable for single-crystal X-ray diffraction were obtained by slow cooling of a hot ethanol solution.

Crystal data

```
\(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7}\)
\(M_{r}=315.29\)
Monoclinic, \(P 2_{1}\)
\(a=10.8447\) (6) A
\(b=8.3527\) (5) \(\AA\)
\(c=17.443\) (1) A
\(\beta=96.257\) (1) \({ }^{\circ}\)
\(V=1570.62(16) \AA^{3}\)
\(Z=4\)
```

$$
\begin{aligned}
& D_{x}=1.333 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 6342 \\
& \quad \text { reflections } \\
& \theta=2.7-30.6^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=200(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.46 \times 0.42 \times 0.40 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003) $T_{\text {min }}=0.868, T_{\text {max }}=0.96$ 16017 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0699 P)^{2}\right. \\
\quad+0.1865 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.34 \mathrm{e}^{-3} \\
\Delta \rho_{\min }= \\
=
\end{array}{ }^{-0.27 \mathrm{e}^{-3}}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.110$
$S=1.05$
4157 reflections
405 parameters
H -atom parameters constrained

All H atoms were placed in calculated positions and refined with a riding model; the $\mathrm{C}-\mathrm{H}$ distances were $0.98-1.00 \AA$, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {methine }}\right)$. Friedel pairs were merged before refinement. The absolute configuration assignment is based on the known configuration of the C atoms, assuming retention of their configuration during the synthesis of the azide. The s.u. values of the cell parameters are taken from the software, recognizing that the values are unreasonably small (Herbstein, 2000).

Data collection: SMART (Bruker, 2002); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

MZ was supported by NSF grant 0111511 , PN by NIH grant R15 AI053112-01 and the diffractometer was funded by NSF grant 0087210, by the Ohio Board of Regents grant CAP-491, and by YSU.

References

Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SMART for WNT/2000. Version 5.630. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT-Plus. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.
Cao, S. \& Roy, R. (1996). Carbohydr. Lett. 2, 27-34.
Györgydeák, Z. \& Szilágyi, L. (1985). Liebigs Ann. Chem. pp. 103-112.
Kunz, H., Pfrengle, W., Rueck, K. \& Sagar, W. (1991). Synthesis, pp. 10391042.

Herbstein, F. H. (2000). Acta Cryst. B56, 547-557.
Subramaniam, S. (1997). Tetrahedron Lett. 38, 3127-3130.

